TTIC 31150/CMSC 31150
Mathematical Toolkit (Fall 2024)

Avrim Blum

Lecture 12: Tail inequalities 2



Recap

The probabilistic method, coupon collector problem, DeMillo-Lipton-Schwartz-Zippel
lemma, polynomial identity testing, application of DLSZ to finding perfect matchings.

Basic tail inequalities: Markov’s inequality and Chebyshev’s inequality.
Properties of variance: Var(},; X;) = ).; Var(X;) if pairwise independent.
Markov vs Chebyshev for coin flips.

Threshold phenomena in random graphs.



Markov and Chebyshev

Proposition 1.1 (Markov's Inequality) Let X be non-negative variable. Then,

P[X >t < —& (1)

Equivalently,

P[X>a-E[X]] <

1
= 2)

Proposition 1.2 (Chebyshev’s inequality) Let X be a random variable and let y = E [X].

Then,

Var [X E [(X —pn)?
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Chernoff-Hoeffding bounds

Consider n mutually independent Bernoulli RV.s X3, ..., X,,, where P(X; = 1) = p;.
* LetX = ); X;,andletu = E|X] = ).; p;.

Q: how can we use mutual independence to show that it is very unlikely that X will be too
far from its expectation?

Intuition: Let’s say all p; = 0.5. X = #heads in a sequence of fair coin flips. Want to show
it’s unlikely we’ll have many more heads than tails.

* Consider this random walk: starting at 1, on heads multiply by 1 4+ € and on tails multiply
by 1 — €. Final position Y =[], Y;, where Pr|Y; =1+ €| =Pr|Y¥; =1 —¢€] = 0.5.

* By mutual independence, E[Y] =[[; E|Y;] =[[;1 = 1.

* By Markov, Pr[Y > 1,000,000] < .000001. But since Y grows multiplicatively, it doesn’t
take too many more heads than tails for Y to get large. (Caveat: (1 + €)(1 —€) = 1 — €?)




Chernoff-Hoeffding bounds

Consider n mutually independent Bernoulli RV.s X3, ..., X,,, where P(X; = 1) = p;.
* LetX = ); X;,andletu = E|X] = ).; p;.

Now, let’s do this for real...



Chernoff-Hoeffding bounds

Consider n mutually independent Bernoulli RV.s X3, ..., X,,, where P(X; = 1) = p;.
* LetX = ); X;,andletu = E|X] = ).; p;.

Using the fact that the function e* is strictly increasing, we get that for A > 0
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Let’s analyze the numerator:
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Chernoff-Hoeffding bounds

So,PIX=>(1+&)ul] < (€' ~Du-A(1+8) 1 set ] to minimize (e? =146, 2 =In(1+ 8))
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Chernoff-Hoeffding bounds

So,PIX=>(1+&)ul] < (€' ~Du-A(1+8) 1 set ] to minimize (e? =146, 2 =In(1+ 8))
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Similarly, P[X < (1 —6)u] < ((1_5)1_5) .

For § € [0,1] can use Taylor series to simplify to:
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Comparing vs Chebyshev on fair coin tosses
Consider n independent fair coin flips X1, ..., X;;,, P(X; = 1) = %, X=X;X;,u=E[X] :g

Var[X] _  n/4 1

* Chebyshev: P[|X —pu| = du] < 22 = R o

- Chernoff/Hoeffding: P[|X — u| = 6u] < 2e~9°1/6,

> Using 6 = k/+/n, get P[|X — u| = ko] = e~ 0(k*)



Random Vectors

Suppose we pick m random vectors vy, ..., v,,, € {—1,1}"*. Clearly, (v;, v;) = n.

What about (v;, v;) for i # j? Claim: whp, |(vi, vj)| = 0(\/nlogm) foralli #j.

So, even though can only have n truly orthogonal vectors, can have a much larger
number of nearly-orthogonal vectors.



Random Vectors

Suppose we pick m random vectors vy, ..., v,,, € {—1,1}"*. Clearly, (v;, v;) = n.

What about (v;, v;) for i # j? Claim: whp, |(vi, vj)| = 0(\/nlogm) foralli #j.

m
2

* Fork € {1, ...,n} let X;, be indicator RV for event that kth coordinate of v;, v; are equal.

Proof: First, fix some i, s.t. i # j (then will do a union bound over all ( ) such pairs).

* Let X = ), X). By Chernoff/Hoeffding, IP (‘X — g‘ = 52_n) < 2e79°n/6,

* Notice that |(vi,vj) =2 |X — g‘ So, usingd = 6 /lnTm we get:

]P>( (vi,vj)| > 6\/nlnm) < 2e70Inm — 26

m
Finally, do a union bound over all (2) pairs. Overall prob of failure < m™*%.



Balls and Bins revisited

We saw earlier that if we toss balls independently at random into n bins, it will take an
expected O(nlogn) tosses until there are no empty bins.

Other statistics:

* If toss n balls into n bins, what is the expected fraction of empty bins?

n
> Let X; be indicator R.V. for event that bin i is empty. E[X;] = (1 — l) ~ é So,
expected fraction of empty binsis = 1/e.

* |f toss n balls into n bins, how loaded will the most-loaded bin be?



Balls and Bins revisited

3lnn

balls.

Claim: if we toss n balls into n bins, whp no bin will have more thant = ——

Proof:

* Let X;; be indicator RV for event that ball j isin bin i. Let Z; = »; X;;. What is E[Z;]?

* E[Z;] = 1 and is a sum of independent Bernoulli R.V.s, so can apply Chernoff/Hoeffding.

(14 6)t+o

et—1 e\! ed g
c PlZ; > t] < < (—) : P[Z; = (1+8)u] < ( )

Inlnn Inn

For t = 2™ we have (%)t < (ln I n)t = ((L)O'gt) = 0(e™27In1) = 9(n=27),

Now do a union bound over all i.
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